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Abstract

Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot
compete with Turbo codes or low-density parity-check codes (LDPC) as far as performance is concerned. The Accumulate-Repeat-
Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing,
where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance
with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random
codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds
we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have
shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code
with puncturing.
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Maximum Likelihood Decoding Analysis of
Accumulate-Repeat-Accumulate Codes

I. INTRODUCTION

Low Density Parity Check (LDPC) codes were proposed
by Gallager [1] in 1962. After introduction of turbo codes
by Berrou et al [2] in 1993, researchers revisited the LDPC
codes, and extended the work of Gallager. After Gallager huge
number of contributions have been made to LDPC codes see
for example [3], [6], [9], [10], [11], [12] and references there.

The advent of Turbo codes; introduced in [2]; has started a
big movement towards the invention of a myriad of new code
structures. The basic properties of these codes are the ability
of iterative decoding and using pseudorandom interleavers. A
pretty wide class of code structures called Turbo-like codes
was introduced in {4]. Repeat-Accumulate codes (RA) are
perhaps the simplest codes among this class. Simplicity of
these codes lends itself to a more comprehensive analysis of
their performance. Divsalar et al. [4] have shown that the
performance of these codes with ML decoding can achieve
near Shannon-limit performance. Moreover, they have proven
that it achieves the Shannon-limit when rate goes to zero.
Irregular Repeat-Accumulate (IRA) codes could achieve much
better performance, which was shown by Jin et al. [5]. Jin
presented a method for designing very good IRA codes for
binary erasure and additive white Gaussian channels. He
showed that they outperform Turbo codes for very large block
sizes. In this paper first we analyze the performance of RA
codes with regular puncturing. We show that with increasing
the repetition and puncturing the output of the accumulator
we can construct better codes for rate 1/2 as far as the
performance is concerned. Furthermore, we show that the use
of an accumulator as a precoder further improves the ML
decoding performance.

II. MAXIMUM LIKELIHOOD DECODING ANALYSIS

Since there is no practical ML decoding algorithm available
for block codes with large block size, we use the performance
bounds to obtain some insight on codes behavior. In [7]
Divsalar (see also [8]) provides a tight upper bound on frame
(word) error rate (FER) and bit error rate (BER) for a (n, k)
linear block code with code rate R, = k/n and distance
spectrum Ag (number of codewords with weight d), decoded
by Maximum Likelihood criterion over an additive white
Gaussian noise (AWGN) channel. It also provides a minimum
Eb/No threshold with closed form expression. We use this
bound throughout the paper. Define the normalized distance
(with respect to all zero codeword) as § = d/n, and the
normalized distance spectrum which is also called the rate
distance spectrum as r(§) = l—“—f“, then the FER bound in

[7] or [8] can be expressed as:
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where % = Rc%, and 0 < 8 < 1. When 8 = 1, the bound
reduces to union bound. To compute BER bound just replace
Ag with 7" 2 A, 4 in the FER bound where Ay, 4 is the
number of codewords with input weight w, and output weight
d. An important result of this bound is the tightest closed-form

threshold on minimum E, /N, that can be written as
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III. ANALYSIS OF RA CODES WITH PUNCTURING

Repeat-Accumulate codes are the simplest codes among
Turbo-like codes, which make them very attractive for analy-
sis. In RA code an information block of length N is repeated
q times and interleaved to make a block of size gN, and
then followed by a rate-1 accumulator (see Fig. 1). We use
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Fig. 1.

the concept of uniform interleaver [13] to compute the
overall input-output weight enumerator (IOWE). In this paper
the final derived IOWE for concatenated codes should be
considered as the averaged IOWE over all interleavers between
repetition code and inner punctured accumulator. Therefore,
we need to compute the IOWE of both repetition code and the
accumulator. For repetition code it is simply the following:

N
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where d;; is Kronecker delta function. The JOWE of the
accumulator is: :
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To compute the IOWE of the RA codes with puncturing
we use the equivalent graph depicted in Fig. 2 instead of
the accumulator with puncturing. Puncturing uses a periodic
pattern 0. ..0X with period p, where zeros indicate the punc-
turing positions. As we see the equivalent code, to compute
IOWE, is a concatenated code of a regular check code and an
accumulator, which is shown in Fig. 3.

3

Fig. 2. Accumulator with puncturing and its equivalent graph for p=3.
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Fig. 3. Block diagram of accumulator with puncturing

Since the check code is regular and memoryless, the presence
of any interleaver between two codes does not change the
IOWE of the overall code. In order to compute the IOWE for
this code we insert a uniform interleaver between two codes.
The next step is to compute the IOWE of the check code.
The IOWE of check code can be expressed in a simple closed
form formula if we use the two dimensional Z-transform of
IOWE denoted by A°(W, D) . The inverse Z-transform results
in A7, ;. We start with N=1, i.c. we have only one parity-
check. We have

A%(W, D) = Ep(W) + Op(W)D 0]

where B, = Even[(1 + W)?], and O, = Odd[(1 + W)?)].
Since there are N independent check nodes in the code, the
IOWE can be written in Z-transform as:

ASW,D) = [Ep(W)+Op(W)D}Y
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The IOWE is obtained by taking the inverse Z-transform. The
closed form expression for A7, ; for arbitrary p can be derived
but it is very complicated. Instead in this paper we derive the
IOWE for p=2, 3, and 4, which are practically more useful.

A. Casep =2

Using the general formula in Z-transform we have:

AW, D)= (1 +W? +2WwD)N ©)

It can be expanded as:
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Therefore the IOWE can be expressed as
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B. Casep = 3
Starting from general formula in Z-transform we have:
ACH(W, D) = [1 + 3W? + (3W + W3) D]V (12)
It can be expanded as:
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Let i + 4% = j, then it is easy to show that
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C. Casep=4

The code for this case can be viewed as a concatenated
code as shown in Fig. 4. Because the check code is regular
and memoryless, we can put any interleaver between the codes
without changing the IOWE of the overall code. By using a
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Fig. 4. Block diagram of check 4 code and its equivalents




uniform interleaver and the results found for case p=2 the
IOWE can be written as:
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Using the result for Afu(%d), we obtain
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This method can be applied for any p that can be decom-
posed into two smaller numbers. Having computed the IOWE
of the check code, we can use the uniform interleaver formula
to compute the IOWE of the accumulator with puncturing. We

have
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It should be noted that despite the fact that we use a uniform
interleaver to obtain the IOWE, we come up with the exact
IOWE for accumulator with puncturing. The next step is to
find the IOWE of the systematic RA code with puncturing,
which is derived in case of a uniform interleaver after repeti-

tion as N 4rep(q) pacc(p)
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For systematic punctured RA (q=3,p=3)
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Now we obtain the asymptotic expression of r(§) for
punctured RA (q=3,p=3), after summing (22) over w Let
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4p2 +2n [\
8 = -H H(EL
(6) m%m{ ) a2
P2 P1
+(z -mHEZA
G -nHE=
1 2pz +n n/2
+(§—6+ )H(1 5_}_2’%2)
2py +n n/2
+(5 - 3 )H(6 — 22%"‘!1)
+(n+ p2 —2p1) In3} (23)

where H(-) is the binary (natural) entropy function, H(x) =
—zlnz—(1—2z)In(1—z). Using (23) in (4) we can obtain
the minimum E; /N, threshold for punctured RA (g=3, p=3).
See the next section for results.

For systematic punctured RA (q=4,p=4)
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Now we obtain the asymptotic expression of r(d) for
punctured RA (q=4,p=4), after summing (24) over w. Let
S & for0<d<1,n2 K for0 <5 <1/2, ;255

for0<p1<1—-17 2p2,andp2- for0<p2< —7.
Also 1(n+ 2p1 + 2p2) < min(0.5, 6)
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Using (25) in (4) we can obtain the minimum F,/N,
threshold for punctured RA (q=4, p=4). See the next section
for results.

IV. ML BER PERFORMANCE OF RA CODES WITH
REGULAR PUNCTURING

RA codes are usually non-systematic codes, i.e. the informa-
tion block is not sent along with the output of the accumulator.
However, the RA codes with puncturing should be systematic




in order to be decodable by iterative decoding. Fig. 5 illustrates
the normalized distance spectrum of rate 1/2 codes for a block
size of 4000. These codes are RA code (g=2) which will be
denoted by RA(2), systematic RA codes with puncturing for
(g=3,p=3) which will be denoted by RA(3,3), and (q=4,p=4)
which will be denoted by RA(4,4). Also for comparison the
normalized distance spectrum of rate 1/2 random codes are
shown in Fig. 5. The E;/N, thresholds of these codes for
infinite block lengths using (4) [7] [8] are compared in Table
L. Discrepancy between Random code threshold and Shannon
limit is due to the upper bound which is slightly loose for rate
1/2. The BER performance of RA(3,3) and RA(4,4) are shown
in Fig. 7 and Fig. 8 respectively.
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Fig. 5. Normalized distance spectrum 7(5) vs d of RA codes with puncturing

The asymptotic expression of (&) for RA code with repe-
tition g can be obtained as [4]:

r(d) = max

1-¢
i, a0+ 0 - 9GS

)+6H( )

(26)
and the asymptotic expression of r{J) for random codes
with code rate R, is 7(6) = H(6) + (R — 1) In2.

2(1 %)

- RA_punc | RA_punc | ARA_punc | ARA_punc| Random | Shannon
Rate 172 | RA(g=2) (g=3,0=3) | (=4p=4) | (g=3.0=3) | (q=4.p=0) | Code limit
- . 0308 dB | 0.1874dB
threshold 3364dB] 1.497dB | 08714 | 0-509dB 0.31dB [1]
TABLE I

V. ML PERFORMANCE OF ARA CODES

In this section we obtain the ML performance of ARA
codes, as a precoded RA code with puncturing, using an
accumulator as a precoder. In ARA codes, a portion of the
information block goes to the accumulator. In other words, M
bits are passed through without any change and the rest (N-
M bits) goes through an accumulator. Then the overall output
bits are applied to the punctured RA code. The use of these M

bits is essential for the iterative decoding to start the message-
passing algorithm, M is considered a parameter in code design.
The effect of this parameter is studied in ML decoding. Fig. 6
(a) shows a block diagram of the precoder. Fig. 6 (b) shows
the ARA code.
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Fig. 6. The block diagram of the precoder (b) ARA code

In order to find the performance of the code we need to
compute the IOWE of the precoder. It is easily computed using
the JOWE of the accumulator code as follows:

M
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Therefore the IOWE of the overall systematic ARA (q,p) code
can be written as:
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Note that with or without any interleaver between accumulator
(precoder) and repetition the same expression holds.
For systematic ARA (g=3,p=3)
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Now we obtain the asymptotic expression of 7(8) for ARA
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Using (30) in (4) we can obtain the minimum FE;,/N,
threshold for ARA (g=3, p=3). See the next section for results.
For systematic ARA (q=4,p=4)
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At this point we obtain the asymptotic expression of 7(d) for
ARA (q=4,p=4), using (31). Let « é -2-1‘,’—{,- for 0 < & < 1/2;
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Using (32) in (4) we can obtain the minimum E,/N,
threshold for ARA (q=4, p=4). See the next section for results.

VI. ML BER PERFORMANCE OF ARA CODES

The BER performance bound {7], [8] for ARA(3,3) and
ARA(4,4) for different Ms are compared to that of random
code for the same input block size (4000) in Fig. 7 and Fig. 8
respectively. It is observed that the more number of bits accu-
mulates in the precoder, the loweér the code threshold becomes.
However, the improvement diminishes below a certain point,
which is M= 1/5 N for ARA(3,3) and M= 2/5 N for ARA(4,4).
It is obvious that when M=N the codes turn into RA with
puncturing. It is very interesting that the performance of the
ARA(4,4) approaches very closely to that of random codes
for the same block size in low Eb/No region. For infinite
block size we minimize the threshold expression in (4) with
respect to «. It is easy to show that the second derivative
of the threshold with respect to « is always negative. Thus
for ML decoding, the minimum threshold is achieved when
a — 0. However, for all values of 0 < a < 0.1 in case of
ARA(g=3,p=3), and 0 < e < 0.2 in case of ARA (q=4,p=4),
very small change in threshold was observed.

ARA(3,3) ML performance bound
" Block size = 4000

8ER 107 F

1 L 1 L
14 18 18 2

Eb/No
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Fig. 7. BER bounds for ARA(3,3) code

It is very instructive to observe the distance spectrum of these
codes. As we see in Fig. 9 the only difference between the
distance spectrum of these codes and a random code is in the
low-distance region, which causes the error floor.

Table I tabulates the minimum Eb/No threshold using (4)
for the ARA codes discussed. As we expected based on the
BER performance bound for input block of 4000, the E,/N,
threshold of ARA(4,4) for infinite block is also extremely close
to the threshold of random codes. The interleaving gain for
for these codes for FER is 1/N, and for BER is 1/N2. Thus
precoder improves the SNR threshold but the interleaving gain
remains unchanged with respect to RA codes with puncturing.

VII. CONCLUSION

In this paper we analyzed a new channel coding scheme
called Accumulate Repeat Accumulate codes (ARA). This
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Fig. 8. BER bounds for ARA(4,4) code
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Fig. 9. Normalized distance spectrum r(8) vs d of ARA codes

class of codes are a subclass of Low Density Parity Check
(LDPC) codes with fast encoder structure. The weight distri-
bution of some simple ARA codes is obtained, and through
existing tightest bounds we have shown the ML SNR threshold
of ARA codes approaches very closely to the performance of
random codes.
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